The lexicographic working environment in theory and practice

Andrea Abel, EURAC - Bozen/Bolzano (Italy), andrea.abel@eurac.edu
Annette Klosa, IDS - Mannheim (Germany), klosa@ids-mannheim.de
Outline

1. Introduction

2. The modern lexicographic working environment
 • Main characteristics of a dictionary writing system
 • Off-the-shelf versus in-house software

3. An example: elexiko
 • The elexiko project
 • A critical reflection on the elexiko working environment

4. Conclusions and outlook
1. Introduction

- Growing automation & ensuing demands for targeted software tools → gap in meta-lexicographic research

- Aims of the talk:
 - to contribute to fill this gap (focus on academic non-commercial lexicography, with the help of a real-life example)
 - to reflect on selection criteria for lexicographic tools and to propose some recommendations for how to structure the lexicographic working environment
2. The modern lexicographic working environment

- Dictionary writing system (DWS):

“[...] a piece of software for writing and producing a dictionary. It might include an editor, a database, a Web interface and various management tools [...]” (Kilgarriff 2006: 7)

- Examples:
 - commercial products (e.g. ABBY Lingvo Content, IDM DPS, iLEX, TLex)
 - in-house tools (e.g. ANW Article Editor, DEB, EELex, Onoma)

(cf. Abel in print, de Schryver 2011)
2.1 Main characteristics of a DWS

- Three main components:
 a) an editing tool
 b) a database
 c) administrative tools

2.1 Main characteristics of a DWS

a) The editing tool, e.g.:

- different visualization options, usually a ‘what-you-see-is-what-you-get’ (WYSIWYG) and a ‘tree-diagram’ view

- consistency of entries, e.g. limited number of values (e.g. grammar codes) for certain fields or use of drop-down lists

- automatic generation of some non-typographical structure indicators (e.g. commas, brackets)

- integrated style guide

- copy and paste functions
2.1 Main characteristics of a DWS

- use of ‘templates’ for typical entry-types or recurring parts of entries

- validation of the entry structure, i.e. check that the syntax corresponds to the dictionary’s DTD

- support with error-prone procedures, e.g. automatic re-numbering of senses, update of cross-references

- real-time spellchecker

- ...
2.1 Main characteristics of a DWS

b) The database, e.g.:

- complex searches, e.g. for entries written or modified by an editor
- use of Unicode that recognizes all characters
- a server-client architecture that easily allows distributed work via Internet from any location
- usually use of XML/DTD, XML Schema or own formats based on XML
- data import and export from and into different formats, e.g. XML, RTF, PDF, HTML
- ...
2.1 Main characteristics of a DWS

c) Administrative tools, e.g.:

- a ‘workflow manager’, e.g. to allocate batches of entries to be compiled to single lexicographers
- search options, e.g. to keep track of progress against the working schedule
- feedback possibilities to lexicographers
- assignement of read and write permissions
- lock of individual fields, e.g. that are to be edited by specialists
2.1 Main characteristics of a DWS

- version control
- automation of processes through scripts, e.g. mass data update
- batch merges
- ...
2.2 Off-the-shelf versus in-house software

- tendency:
 - commercial publishers (e.g. all the main English language publishers) → off-the-shelf packages
 - academic institutions (e.g. the DWDS or elexiko initiatives), but also some publishers (e.g. DUDEN) → in-house software

- existence of excellent, highly sophisticated off-the-shelf DWSs → development of an in-house tool = reinventing the wheel? (cf. de Schryver 2011)
2.2 Off-the-shelf versus in-house software

- Possible reasons for the development of own tools:
 - the development of own tools as a part of the research activities of an institution (e.g. *Jibiki*, *elexiko*)
 - further development of home-grown systems, often in long-term projects, usually started before commercial packages were available
 - off-the-shelf tools do not fulfill the requirements of a specific project (e.g. *DUDEN-Wissensnetz*)
 - lack of knowledge about commercial products and their features → no informed decision
3.1 An example: *elexiko*

- Corpus-based, monolingual German online dictionary:
 - www.elexiko.de
 - 300 000 entries, dictionary under construction
 - published as one of the reference works in the dictionary portal *OWID* (www.owid.de)
 - work in progress since ca. 10 years
3.1 An example: *elexiko*

- **Working environment: several components**

 - *COSMAS II* as the corpus tool to process data from the *elexiko-corpus*

 - XML-editor: at first *XMetaL*, now *Oxygen*

 - cross-reference-management tool (*Vernetziko*), supporting the creation and maintenance of links between entries and other lexicographical processes
3.1 An example: *elexiko*

- Working environment: several components
 - *EDAS*-interface to the *ORACLE* database storing the data; offering search options; also used as a workflow manager
 - in-house presentation similar to web presentation
 - electronic dictionary manual and documentation of DTD
 - electronic secondary sources (other dictionaries, grammars)
3.1 An example: *elexiko*

- **Workflow:**
 - checking out an entry to be worked on through *EDAS*, locking it for other editors
 - searching the corpus, analyzing the corpus data with *COSMAS II*
 - editing the entry in *Oxygen*, including citations from the corpus via copy & paste
 - lexicographic manual can be consulted context sensitive within *Oxygen*
3.1 An example: *elexiko*

- **Workflow:**
 - *Oxygen* validates entries, when checking the entry into the *ORACLE*-database, a second validation takes place
 - *Vernetziko* is used extensively to create links and to maintain them
 - only after extensive proofreading and testing (in an in-house browser preview), the entry is published online
3.1 A critical reflection on the *elexiko* environment

- *Oxygen* offers many of the functionalities of DWSs, e.g. copy & paste of parts of entries, validation, WYSIWYG- and ‘tree-diagram’ view

- *ORACLE*-database supports server-client-architecture, enables data import and export and offers sophisticated search options

- Own tools support workflow or linking entries; but: support of workflow is not very elaborate
3.1 A critical reflection on the elexiko environment

- Investment in the beginning of the project for ORACLE was rather high; thus, no off-the-shelf DWS was bought, but with little technical effort, writing the entries could start.

- In the meantime, total expenditure for all the tools was definitely higher than cost for purchase and support for an off-the-shelf DWS would have been.

- But: since all dictionaries in the IDS dictionary portal use the same technical environment, cost is justifiable.
3.1 A critical reflection on the *elexiko* environment

- Hosting, maintenance, back-up, and training for our environment is in-house

- The environment is compatible to *Windows*-PCs

- But: Several different projects and persons are in charge of the different components; thus, with technical problems, it is not always easy for lexicographers to know who is responsible
4. Conclusions & outlook

- Some suggestions:
 - in the phase of planning, a thorough analysis of off-the-shelf-DWSs is mandatory
 - own developments should offer the same features as any commercial DWS
 - own developments can be useful to the whole lexicographic community if they are developed as share ware
 - when training lexicographers, detailed information on DWSs should not be forgotten
Thank you for your attention!
Some references

Dictionaries

Dictionary Writing Systems

Bibliography

Andrea Abel, Annette Klosa